Extensions 1→N→G→Q→1 with N=C16 and Q=C23

Direct product G=N×Q with N=C16 and Q=C23
dρLabelID
C23×C16128C2^3xC16128,2136

Semidirect products G=N:Q with N=C16 and Q=C23
extensionφ:Q→Aut NdρLabelID
C16⋊C23 = C2×C16⋊C22φ: C23/C2C22 ⊆ Aut C1632C16:C2^3128,2144
C162C23 = C22×D16φ: C23/C22C2 ⊆ Aut C1664C16:2C2^3128,2140
C163C23 = C22×SD32φ: C23/C22C2 ⊆ Aut C1664C16:3C2^3128,2141
C164C23 = C22×M5(2)φ: C23/C22C2 ⊆ Aut C1664C16:4C2^3128,2137

Non-split extensions G=N.Q with N=C16 and Q=C23
extensionφ:Q→Aut NdρLabelID
C16.1C23 = C2×Q32⋊C2φ: C23/C2C22 ⊆ Aut C1664C16.1C2^3128,2145
C16.2C23 = D16⋊C22φ: C23/C2C22 ⊆ Aut C16324C16.2C2^3128,2146
C16.3C23 = D4○D16φ: C23/C2C22 ⊆ Aut C16324+C16.3C2^3128,2147
C16.4C23 = D4○SD32φ: C23/C2C22 ⊆ Aut C16324C16.4C2^3128,2148
C16.5C23 = Q8○D16φ: C23/C2C22 ⊆ Aut C16644-C16.5C2^3128,2149
C16.6C23 = C2×D32φ: C23/C22C2 ⊆ Aut C1664C16.6C2^3128,991
C16.7C23 = C2×SD64φ: C23/C22C2 ⊆ Aut C1664C16.7C2^3128,992
C16.8C23 = C2×Q64φ: C23/C22C2 ⊆ Aut C16128C16.8C2^3128,993
C16.9C23 = C4○D32φ: C23/C22C2 ⊆ Aut C16642C16.9C2^3128,994
C16.10C23 = C32⋊C22φ: C23/C22C2 ⊆ Aut C16324+C16.10C2^3128,995
C16.11C23 = Q64⋊C2φ: C23/C22C2 ⊆ Aut C16644-C16.11C2^3128,996
C16.12C23 = C22×Q32φ: C23/C22C2 ⊆ Aut C16128C16.12C2^3128,2142
C16.13C23 = C2×C4○D16φ: C23/C22C2 ⊆ Aut C1664C16.13C2^3128,2143
C16.14C23 = C2×D4○C16φ: C23/C22C2 ⊆ Aut C1664C16.14C2^3128,2138
C16.15C23 = Q8○M5(2)φ: C23/C22C2 ⊆ Aut C16324C16.15C2^3128,2139
C16.16C23 = C2×M6(2)central extension (φ=1)64C16.16C2^3128,989
C16.17C23 = D4○C32central extension (φ=1)642C16.17C2^3128,990

׿
×
𝔽